8^x*4^(x^2)-6=4

Simple and best practice solution for 8^x*4^(x^2)-6=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8^x*4^(x^2)-6=4 equation:



8^x*4^(x^2)-6=4
We move all terms to the left:
8^x*4^(x^2)-6-(4)=0
We add all the numbers together, and all the variables
8^x*4^x^2-10=0
Wy multiply elements
32x^2-10=0
a = 32; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·32·(-10)
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{5}}{2*32}=\frac{0-16\sqrt{5}}{64} =-\frac{16\sqrt{5}}{64} =-\frac{\sqrt{5}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{5}}{2*32}=\frac{0+16\sqrt{5}}{64} =\frac{16\sqrt{5}}{64} =\frac{\sqrt{5}}{4} $

See similar equations:

| 4x-6+12x=14 | | 5x+12+14x-15=16x+11 | | 7x+x=71 | | (n)(n+3)(n+4)=360 | | -6a+5+7a=12-21 | | 21a=56+7 | | u/3-4=2 | | v-(-2)=20 | | 13y+24=63 | | 3(2r-1)+5=5(r-1 | | 3y+9-8=31 | | a=6a/4 | | 9x^2-10x-90=0 | | -10+6w=-2w+3(-1w+4) | | 2x+(x+27)=180 | | 18-9m=-3(m+6) | | 4-2x=39-9x+2x | | 5x+20°=2x+12° | | (4x-5)°=80° | | y″+100y=0 | | 5(3b+7)‐1/3b=20 | | 4x+-5=6x+-1 | | 2.5x-1.6=5.9 | | k=50,3.6 | | -3x-4(x-4)=58 | | x=-13x+1 | | 90=-6(3a+3) | | -33=3(xx-9) | | 5/2x+1=26 | | -33=(3x-9) | | 11+0x-7=6 | | 80+10x=20x |

Equations solver categories